読者です 読者をやめる 読者になる 読者になる

adhara’s blog

数理物理に関する記事を書きます。 https://twitter.com/adhara_mathphys

量子力学

Kustaanheimo-Stiefel 変換(その3)〜非相対論的水素原子Schrödinger方程式を解く〜

いくつかの記事で水素原子やケプラー問題を四次元調和振動子の問題に変換するKustaanheimo-Stiefel (KS) 変換について紹介していく予定である。 第三弾である本記事ではKS変換によって導出された固有方程式を実際に解く、ということを行う。 はじめに ノート…

Kustaanheimo-Stiefel 変換(その2)〜非相対論的水素原子Schrödinger方程式の書き換え〜

いくつかの記事で水素原子やケプラー問題を四次元調和振動子の問題に変換するKustaanheimo-Stiefel (KS) 変換について紹介していく予定である。 第二弾である本記事では非相対論的水素原子のSchrödinger方程式をKS変換により書き換えるということを行う。 は…

剛体球の自由回転運動のシュレディンガー方程式における力学的対称性

本記事では剛体球の自由回転運動のシュレディンガー方程式における力学的対称性について紹介する。 はじめに 水素原子の力学的対称性については、 adhara.hatenadiary.jp 等で詳しく紹介してきた。 そこではハミルトニアンが元々の空間の対称性よりも大きな…

ボソン演算子を用いた水素原子束縛状態の波動関数の表示

以前の記事 adhara.hatenadiary.jp ではボソン演算子を用いてSU(2)のユニタリ表現を構築できることを紹介した。 ボソン演算子を用いてリー代数su(2)の元を表示することが出来ることも示した。本記事では、ボソン生成演算子を用いたSU(2)のユニタリ表現の応用…

水素様原子スペクトルに関するBargmannの議論(その2)〜 Pauliの解法と放物線座標表示解法の関係 〜

記事adhara.hatenadiary.jpではBargmannの議論にしたがって、水素様原子スペクトルに関するPauliの解法とFockの解法の関係性について説明した。 すなわち、Pauliの解法において重要な働きをしたLRLベクトルが、実は四次元空間における回転群の生成子の一つで…

水素様原子のエネルギースペクトル解法(その6)〜 E. Schrödinger、P. S. Epstein、I. Wallerらによる放物線座標による変数分離解 〜

数回に分けて、水素様原子に対する(非相対論的)束縛状態エネルギースペクトル を求めるための8通りの解法を紹介する予定である。 E. Schrödingerによる波動方程式解法(ラゲール陪多項式を用いる) W. Pauliによるso(4)代数を用いる解法 su(1,1)代数を用い…

水素様原子スペクトルに関するBargmannの議論(その1)〜 PauliとFockの解法の関係 〜

水素様原子はハミルトニアンの持つ空間対称性SO(3)を超えた対称性SO(4)を持つことが知られている。 この対称性は力学的対称性と呼ばれる。(シッフの教科書 を参照) 力学的対称性を利用した解法としてはPauliの解法 adhara.hatenadiary.jpとFockの解法 adha…

水素様原子のエネルギースペクトル解法(その5)〜 Fockの解法 〜

数回に分けて、水素様原子に対する(非相対論的)束縛状態エネルギースペクトル を求めるための8通りの解法を紹介する予定である。 E. Schrödingerによる波動方程式解法(ラゲール陪多項式を用いる) W. Pauliによるso(4)代数を用いる解法 su(1,1)代数を用い…

【一般次元】水素様原子に対するシュレディンガー方程式のフーリエ変換の導出

数回に分けて、水素様原子に対する(非相対論的)束縛状態エネルギースペクトル を求めるための7通りの解法を紹介する予定である。 E. Schrödingerによる波動方程式解法(ラゲール陪多項式を用いる) W. Pauliによるso(4)代数を用いる解法 su(1,1)代数を用い…

【図解】Pauliのso(4)代数を用いた水素様原子エネルギースペクトル解法について

本記事では、so(4)代数を用いた水素様原子に対するエネルギースペクトル解法(Pauliの方法)の図解を行う。 上記解法の詳細については以前の記事、 adhara.hatenadiary.jp を参照して欲しい。Pauliの方法は、規格化したLaplace-Runge-Lenz(LRL)ベクトルと角…

【図解】因数分解を用いた水素様原子エネルギースペクトル解法について

本記事では、因数分解を用いた水素様原子に対するエネルギースペクトル解法の図解を行う。 上記解法の詳細については以前の記事、 adhara.hatenadiary.jp を参照して欲しい。本記事を書くにあたり、A. E. McCoy and M. A. Caprioの論文、J. Oscar Rosas-Orti…

【図解】su(1,1)代数を用いた水素様原子エネルギースペクトル解法について

本記事では、su(1,1)代数を用いた水素様原子に対するエネルギースペクトル解法の図解を行う。 上記解法の詳細については以前の記事、 adhara.hatenadiary.jp を参照して欲しい。本記事を書くにあたり、国場敦夫の記事やA. E. McCoy and M. A. Caprioの論文を…

水素様原子のエネルギースペクトル解法(その1)〜 Schrödingerによるラゲール陪多項式を用いた波動方程式解法 〜

数回に分けて、水素様原子に対する(非相対論的)束縛状態エネルギースペクトル を求めるための8通りの解法を紹介する予定である。 E. Schrödingerによる波動方程式解法(ラゲール陪多項式を用いる) W. Pauliによるso(4)代数を用いる解法 su(1,1)代数を用い…

水素様原子のエネルギースペクトル解法(その2)〜 so(4)代数を用いる解法 〜

数回に分けて、水素様原子に対する(非相対論的)束縛状態エネルギースペクトル を求めるための8通りの解法を紹介する予定である。 E. Schrödingerによる波動方程式解法(ラゲール陪多項式を用いる) W. Pauliによるso(4)代数を用いる解法 su(1,1)代数を用い…

水素様原子における量子力学版Laplace-Runge-Lenzベクトル(その3) 〜 ベクトル成分間の交換関係 〜

数回に分けて、水素様原子に対する(非相対論的)束縛状態エネルギースペクトル を求めるための7通りの解法を紹介する予定である。 E. Schrödingerによる波動方程式解法(ラゲール陪多項式を用いる) W. Pauliによるso(4)代数を用いる解法 su(1,1)代数を用い…

水素様原子における量子力学版Laplace-Runge-Lenzベクトル(その2)〜 直交性等 〜

数回に分けて、水素様原子に対する(非相対論的)束縛状態エネルギースペクトル を求めるための7通りの解法を紹介する予定である。 E. Schrödingerによる波動方程式解法(ラゲール陪多項式を用いる) W. Pauliによるso(4)代数を用いる解法 su(1,1)代数を用い…

水素様原子における量子力学版Laplace-Runge-Lenzベクトル(その1)〜 ハミルトニアンと可換であること 〜

数回に分けて、水素様原子に対する(非相対論的)束縛状態エネルギースペクトル を求めるための7通りの解法を紹介する予定である。 E. Schrödingerによる波動方程式解法(ラゲール陪多項式を用いる) W. Pauliによるso(4)代数を用いる解法 su(1,1)代数を用い…

水素様原子のエネルギースペクトル解法(その4)〜 因数分解による方法 〜

数回に分けて、水素様原子に対する(非相対論的)束縛状態エネルギースペクトル を求めるための8通りの解法を紹介する予定である。 E. Schrödingerによる波動方程式解法(ラゲール陪多項式を用いる) W. Pauliによるso(4)代数を用いる解法 su(1,1)代数を用い…

水素様原子のエネルギースペクトル解法(その3)〜 su(1,1)代数を使うヴァージョン 〜

数回に分けて、水素様原子に対する(非相対論的)束縛状態エネルギースペクトル を求めるための8通りの解法を紹介する予定である。 E. Schrödingerによる波動方程式解法(ラゲール陪多項式を用いる) W. Pauliによるso(4)代数を用いる解法 su(1,1)代数を用い…

Copyright © 2016 ブログ名 All rights reserved.