群の表現論(その2)〜 Schurの補題と有限群に対するSchurの直交性 〜

以前の記事 adhara.hatenadiary.jp で群の表現論に関する定義といくつかの定理を紹介した。 有限次元表現ユニタリ表現が完全可約(半単純)であるというところまで書いている。本記事では既約表現に関する重要な定理である、Schurの補題と有限群の有限次元表…

SU(2)群とsu(2)代数の表現論(その2)〜 有限次元既約ユニタリ表現とWignerのD行列 〜

本記事ではコンパクトリー群の中でもSU(2)群についての有限次元既約ユニタリ表現(unitary irreducible representations)について紹介する。 SU(2)群の既約ユニタリ表現は球面調和関数やスピンを考えるうえで重要である。本記事の構成は以下のようになってい…

群の表現論(その1)〜 定義や幾つかの事項 〜

本記事では群の表現の定義や表現論の定理の幾つかを紹介する。 表現論の中でもよく用いられるSchurの補題(とその逆)を説明する上での準備という意味合いがある。 本記事の議論は有限群には限定していない(とくにコンパクトリー群への応用を考えているので…

SU(2)群とsu(2)代数の表現論(その1)〜 SU(2)群とsu(2)代数の導入 〜

本記事ではSU(2)群とsu(2)代数の表現論に関する第一弾の記事である。 第一弾ではSU(2)群の行列を用いた定義、すなわち線形表現による定義を紹介する。 この場合、行列の次元をもつベクトル空間への作用を想定しているので、定義の時点ですでに表現となってい…

【ノーベル賞関連】Berezinskii-Kosterlitz-Thouless 転移について

2016年のノーベル物理学賞は、J. M. Thouless, D. J. Kosterlitz, F. D. M. Haldane の三人が受賞した。 「物質のトポロジカル相とトポロジカル相転移の理論的発見」が受賞理由となっている。 近年、物質中におけるトポロジカル相の発現というものが盛んに研…

水素様原子スペクトルに関するBargmannの議論(その2)〜 Pauliの解法と放物線座標表示解法の関係 〜

記事adhara.hatenadiary.jpではBargmannの議論にしたがって、水素様原子スペクトルに関するPauliの解法とFockの解法の関係性について説明した。 すなわち、Pauliの解法において重要な働きをしたLRLベクトルが、実は四次元空間における回転群の生成子の一つで…

水素様原子のエネルギースペクトル解法(その6)〜 E. Schrödinger、P. S. Epstein、I. Wallerらによる放物線座標による変数分離解 〜

数回に分けて、水素様原子に対する(非相対論的)束縛状態エネルギースペクトル を求めるための8通りの解法を紹介する予定である。 E. Schrödingerによる波動方程式解法(ラゲール陪多項式を用いる) W. Pauliによるso(4)代数を用いる解法 su(1,1)代数を用い…

水素様原子スペクトルに関するBargmannの議論(その1)〜 PauliとFockの解法の関係 〜

水素様原子はハミルトニアンの持つ空間対称性SO(3)を超えた対称性SO(4)を持つことが知られている。 この対称性は力学的対称性と呼ばれる。(シッフの教科書 を参照) 力学的対称性を利用した解法としてはPauliの解法 adhara.hatenadiary.jpとFockの解法 adha…

【図解】水素様原子のエネルギースペクトル解法(Fockの解法)について

本記事では、Fockの水素様原子に対するエネルギースペクトル解法(Pauliの方法)の図解を行う。 上記解法の詳細については以前の記事、 adhara.hatenadiary.jp を参照して欲しい。 D次元の水素様原子のエネルギースペクトルが として であり、縮重度は となる…

超球面上の球面調和関数(その2)〜 帯球関数とゲーゲンバウアー多項式 〜

本記事では球面調和関数を具体的に表すための特殊関数であるGegenbauer(ゲーゲンバウアー)多項式について説明する。 Gegenbauer多項式は球面調和関数のうち、 の固定部分群によって固定される特別な関数である帯球関数(Zonal Spherical Function)を具体…

ケプラー問題と力学的対称性(その4)~ 特別な正準座標系で眺めると 〜

いくつかの記事を使って古典力学における力学的対称性について論じるつもりである。第三弾の記事までで、ケプラー問題における束縛状態について、運動の第一積分たちをもちいることで代数を構成できることを見てきた。本記事は、ケプラー問題の束縛状態にお…

ケプラー問題と力学的対称性(その3)~ 束縛状態のso(4)リー代数 〜

いくつかの記事を使って古典力学における力学的対称性について論じるつもりである。ケプラー問題における力学的対称性に関する記事の第三弾である本記事では、ケプラー問題の束縛状態に付随するリー代数について論じる。 前に、量子力学版LRLベクトルの記事…

ケプラー問題と力学的対称性(その2)~角運動量ベクトルとLRLベクトルのポアソンブラケット演算~

いくつかの記事を使って古典力学における力学的対称性について論じるつもりである。今回はケプラー問題における力学的対称性に関する記事の第二弾である。 第一弾ではケプラー問題における運動の第一積分、すなわち保存量について論じた。 今回は角運動量ベ…

ケプラー問題と力学的対称性(その1)~運動の第一積分~

いくつかの記事を使って古典力学における力学的対称性について論じるつもりである。 今回はケプラー問題における力学的対称性についての記事の第一弾である。 本記事では、ケプラー問題における第一運動の積分、すなわち保存量について論じる。古くから知ら…

SO(4)群とso(4)代数の表現論(その2)〜 同相であるが群同型ではない二つのリー群 〜

SO(4)群とso(4)代数の表現論についてまとめる記事の第二弾である。第二弾では前回の記事 adhara.hatenadiary.jp で出てきた、SO(4) 群と SU(2)×SO(3)群の関係について論じる。この記事の動機は、しばしば とか書かれるが(例えばLaplace–Runge–Lenz vector - …

SO(4)群とso(4)代数の表現論(その1)〜 so(4)代数から生成されるリー群たち 〜

SO(4)群とso(4)代数の表現論についてまとめる記事の第一弾である。本記事の構成は以下のようになっている。 SO(4) 群と so(4) 代数の定義 SO(4) 群と so(4) 代数の二種類の直和表現 so(4) 代数 so(4) 代数の既約表現 so(4) 代数から生成されるリー群 SO(4)群…

超球面上の球面調和関数(その1)〜 球面調和解析 〜

以前の記事、 adhara.hatenadiary.jp では超球面上のLaplacian(Laplace-Beltrami演算子)の固有関数としての球面調和関数を紹介していた。 すなわち、D次元空間中の超球面 においては、が成立し、球面調和関数 がLaplace-Beltrami演算子の固有関数となってい…

水素様原子のエネルギースペクトル解法(その5)〜 Fockの解法 〜

数回に分けて、水素様原子に対する(非相対論的)束縛状態エネルギースペクトル を求めるための8通りの解法を紹介する予定である。 E. Schrödingerによる波動方程式解法(ラゲール陪多項式を用いる) W. Pauliによるso(4)代数を用いる解法 su(1,1)代数を用い…

【一般次元】水素様原子に対するシュレディンガー方程式のフーリエ変換の導出

数回に分けて、水素様原子に対する(非相対論的)束縛状態エネルギースペクトル を求めるための7通りの解法を紹介する予定である。 E. Schrödingerによる波動方程式解法(ラゲール陪多項式を用いる) W. Pauliによるso(4)代数を用いる解法 su(1,1)代数を用い…

超球面上のLaplace-Beltrami演算子と球面調和関数

本記事では超球面上のLaplacian(Laplace-Beltrami演算子)の固有関数としての球面調和関数を紹介する。 三次元球面調和関数は球対称性を持つ問題を解くときに有用である(例えば水素原子の波動関数の角度部分)。 球面調和関数は高次元に拡張できるが、例えば四…

超球の体積/超球面の表面積とLaplacianに対するグリーン関数

本記事では超球の体積/超球面の表面積とLaplacianに対するグリーン関数を紹介する。 三次元空間における球の体積や表面積と同様に高次元でも対応する体積/表面積が計算できる。 また三次元空間ではグリーン関数が ~1/r のようになることが知られている(…

四次元空間におけるLaplacianの極座標表示 〜 角運動量演算子との関係 ~

本記事では四次元空間におけるLaplacian(Laplace演算子)の極座標表示、および角運動量演算子を用いた表示を紹介する。Laplacianは動径部分と角度部分(Laplace-Beltrami演算子)に分解されるが、角度部分は実はso(4)代数のCasimir演算子(全てのso(4)代数…

【図解】Pauliのso(4)代数を用いた水素様原子エネルギースペクトル解法について

本記事では、so(4)代数を用いた水素様原子に対するエネルギースペクトル解法(Pauliの方法)の図解を行う。 上記解法の詳細については以前の記事、 adhara.hatenadiary.jp を参照して欲しい。Pauliの方法は、規格化したLaplace-Runge-Lenz(LRL)ベクトルと角…

【図解】因数分解を用いた水素様原子エネルギースペクトル解法について

本記事では、因数分解を用いた水素様原子に対するエネルギースペクトル解法の図解を行う。 上記解法の詳細については以前の記事、 adhara.hatenadiary.jp を参照して欲しい。本記事を書くにあたり、A. E. McCoy and M. A. Caprioの論文、J. Oscar Rosas-Orti…

【図解】su(1,1)代数を用いた水素様原子エネルギースペクトル解法について

本記事では、su(1,1)代数を用いた水素様原子に対するエネルギースペクトル解法の図解を行う。 上記解法の詳細については以前の記事、 adhara.hatenadiary.jp を参照して欲しい。本記事を書くにあたり、国場敦夫の記事やA. E. McCoy and M. A. Caprioの論文を…

水素様原子のエネルギースペクトル解法(その1)〜 Schrödingerによるラゲール陪多項式を用いた波動方程式解法 〜

数回に分けて、水素様原子に対する(非相対論的)束縛状態エネルギースペクトル を求めるための8通りの解法を紹介する予定である。 E. Schrödingerによる波動方程式解法(ラゲール陪多項式を用いる) W. Pauliによるso(4)代数を用いる解法 su(1,1)代数を用い…

水素様原子のエネルギースペクトル解法(その2)〜 so(4)代数を用いる解法 〜

数回に分けて、水素様原子に対する(非相対論的)束縛状態エネルギースペクトル を求めるための8通りの解法を紹介する予定である。 E. Schrödingerによる波動方程式解法(ラゲール陪多項式を用いる) W. Pauliによるso(4)代数を用いる解法 su(1,1)代数を用い…

水素様原子における量子力学版Laplace-Runge-Lenzベクトル(その3) 〜 ベクトル成分間の交換関係 〜

数回に分けて、水素様原子に対する(非相対論的)束縛状態エネルギースペクトル を求めるための7通りの解法を紹介する予定である。 E. Schrödingerによる波動方程式解法(ラゲール陪多項式を用いる) W. Pauliによるso(4)代数を用いる解法 su(1,1)代数を用い…

水素様原子における量子力学版Laplace-Runge-Lenzベクトル(その2)〜 直交性等 〜

数回に分けて、水素様原子に対する(非相対論的)束縛状態エネルギースペクトル を求めるための7通りの解法を紹介する予定である。 E. Schrödingerによる波動方程式解法(ラゲール陪多項式を用いる) W. Pauliによるso(4)代数を用いる解法 su(1,1)代数を用い…

水素様原子における量子力学版Laplace-Runge-Lenzベクトル(その1)〜 ハミルトニアンと可換であること 〜

数回に分けて、水素様原子に対する(非相対論的)束縛状態エネルギースペクトル を求めるための7通りの解法を紹介する予定である。 E. Schrödingerによる波動方程式解法(ラゲール陪多項式を用いる) W. Pauliによるso(4)代数を用いる解法 su(1,1)代数を用い…

Copyright © 2017 ブログ名 All rights reserved.