SO(4)

剛体球の自由回転運動のシュレディンガー方程式における力学的対称性

本記事では剛体球の自由回転運動のシュレディンガー方程式における力学的対称性について紹介する。 はじめに 水素原子の力学的対称性については、 adhara.hatenadiary.jp 等で詳しく紹介してきた。 そこではハミルトニアンが元々の空間の対称性よりも大きな…

ボソン演算子を用いた水素原子束縛状態の波動関数の表示

以前の記事 adhara.hatenadiary.jp ではボソン演算子を用いてSU(2)のユニタリ表現を構築できることを紹介した。 ボソン演算子を用いてリー代数su(2)の元を表示することが出来ることも示した。本記事では、ボソン生成演算子を用いたSU(2)のユニタリ表現の応用…

SO(4)群とso(4)代数の表現論(その3)〜 WignerのD行列を用いた四次元球面調和関数の表示 〜

以前の記事 adhara.hatenadiary.jpでは同じ次数の四次元球面調和関数がなす空間がSO(4)の表現空間としては既約であることをリー代数を用いて示した。高次元の球面調和関数については adhara.hatenadiary.jpでも議論しており、高次元球面上の自乗可積分関数が…

水素様原子スペクトルに関するBargmannの議論(その2)〜 Pauliの解法と放物線座標表示解法の関係 〜

記事adhara.hatenadiary.jpではBargmannの議論にしたがって、水素様原子スペクトルに関するPauliの解法とFockの解法の関係性について説明した。 すなわち、Pauliの解法において重要な働きをしたLRLベクトルが、実は四次元空間における回転群の生成子の一つで…

水素様原子スペクトルに関するBargmannの議論(その1)〜 PauliとFockの解法の関係 〜

水素様原子はハミルトニアンの持つ空間対称性SO(3)を超えた対称性SO(4)を持つことが知られている。 この対称性は力学的対称性と呼ばれる。(シッフの教科書 を参照) 力学的対称性を利用した解法としてはPauliの解法 adhara.hatenadiary.jpとFockの解法 adha…

ケプラー問題と力学的対称性(その3)~ 束縛状態のso(4)リー代数 〜

いくつかの記事を使って古典力学における力学的対称性について論じるつもりである。ケプラー問題における力学的対称性に関する記事の第三弾である本記事では、ケプラー問題の束縛状態に付随するリー代数について論じる。 前に、量子力学版LRLベクトルの記事…

SO(4)群とso(4)代数の表現論(その2)〜 同相であるが群同型ではない二つのリー群 〜

SO(4)群とso(4)代数の表現論についてまとめる記事の第二弾である。第二弾では前回の記事 adhara.hatenadiary.jp で出てきた、SO(4) 群と SU(2)×SO(3)群の関係について論じる。この記事の動機は、しばしば とか書かれるが(例えばLaplace–Runge–Lenz vector - …

SO(4)群とso(4)代数の表現論(その1)〜 so(4)代数から生成されるリー群たち 〜

SO(4)群とso(4)代数の表現論についてまとめる記事の第一弾である。本記事の構成は以下のようになっている。 SO(4) 群と so(4) 代数の定義 SO(4) 群と so(4) 代数の二種類の直和表現 so(4) 代数 so(4) 代数の既約表現 so(4) 代数から生成されるリー群 SO(4)群…

Copyright © 2017 ブログ名 All rights reserved.